" Sistem Persamaan Kuadrat-Linear dan Beberapa Contoh Soalnya "

 https://annisahapsari10.blogspot.com/2021/09/sistem-persamaan-kuadrat-linear-dan.html

ANNISA HAPSARI X MIPA 3 (05) 

( MATEMATIKA WAJIB )


APA ITU SPLK ? 
Sistem persamaan yang terdiri atas sebuah persamaan linear dan sebuah persamaan kuadrat yang masing-masing bervariabel dua disebut sistem persamaan linear-kuadrat (SPLK). 
Jenis SPLK dan Bentuk Umumnya
Berdasarkan karakteristik dan bagian bentuk kuadratnya, sistem persamaan linear dan kuadrat (SPLK) dapat dibedakan menjadi dua macam, yaitu sebagai berikut.
1. SPLK dengan bagian kuadrat berbentuk eksplisit
Suatu persamaan dua variabel x dan y dikatakan berbentuk eksplisit jika persamaan itu dapat diubah menjadi bentuk y = f(x) atau x = f(y). Oleh karena itu, SPLK eksplisit ini memiliki bentuk umum sebagai berikut.
y = ax + b ……………………. (bagian linear)
y = px2 + qx + r ……………. (bagian kuadrat)

2. SPLK dengan bagian kuadrat berbentuk implisit
Persamaan dua variabel x dan y dikatakan berbentuk implisit jika persamaan itu mempunyai bentuk umum sebagai berikut.
ax + by + c = 0 ………………………………. (bagian linear)
px2 + qy2 + rxy + sx + ty + u = 0……. (bagian kuadrat)
Cara Menentukan Penyelesaian SPLK
Secara umum, untuk menyelesaikan SPLK, langkah-langkahnya adalah sebagai berikut.
Langkah 1: Pada bagian persamaan linear, nyatakan x dalam y atau y dalam x.
Langkah 2: Subtitusikan x atau y yang diperoleh dari langkah pertama ke bagian bentuk kuadrat sehingga diperoleh persamaan kuadrat dalam x atau y.
Langkah 3: Selesaikan persamaan kuadrat yang diperoleh dari langkah dua, kemudian nilai-nilai yang diperoleh disubtitusikan ke persamaan linear.

CONTOH SOAL : 
1.himpunan penyelesaian SPLK berikut, kemudian gambarkan sketsa tafsiran geometerinya.
y = x2  1
x  y = 3
Penyelesaian:
Persamaan x  y = 3 dapat kita tulis ulang menjadi bentuk berikut.
y = x  3
subtitusikan y = x  3 ke dalam persamaan y = x2  1 sehingga kita peroleh:
 x  3 = x2  1
 x  3 = x2  1
 x2  x  1 + 3 = 0
 x2  x + 2 = 0
Persamaan kuadrat di atas sulit untuk difaktorkan. Jika kita hitung nilai diskriminannya dengan nilai a = 1, b = 1, dan c = 2, maka kita peroleh:
D = b2  4ac
D = (1)2  4(1)(2)
D = 1  8
D = 7
Karena diskriminannya negatif (D < 1) maka persamaan kuadrat itu tidak memiliki penyelesaian. Oleh karena itu, SPLK di atas tidak memiliki penyelesaian sehingga himpunan penyelesaiannya dapat ditulis . Interpretasi geometri dari SPLK ini adalah tidak adanya titik singgung maupun titik potong antara parabola dan garis lurus. Hal ini dapat kalian lihat pada gambar di bawah ini.
grafik penyelesaian SPLK (sistem persamaan linear dan kuadrat)

2. Carilah himpunan penyelesaian SPLK berikut, kemudian gambarkan sketsa tafsiran geometerinya.
x + y + 2 = 0
y = x2  x  2
Penyelesaian:
Persamaan x + y + 2 = 0 dapat kita tuliskan sebagai berikut.
y = x  2
Subtitusikan nilai y = x  2  ke persamaan y = x2  x  2 sehingga diperoleh:
 x  2 = x2  x  2
 x2  x + x  2 + 2 = 0
 x2 = 0
 x = 0
Subtitusikan nilai x = 0 ke persamaan y = x  2 sehingga diperoleh:
 y = (0)  2
 y = 2
Jadi, himpunan penyelesaiannya adalah {(0, 2)}. Tafsiran geometrinya berupa titik singgung antara garis lurus dan kurva parabola, yaitu di titik (0, 2) seperti yang ditunjukkan pada gambar berikut ini.
grafik penyelesaian SPLK (sistem persamaan linear dan kuadrat)
3. Carilah himpunan penyelesaian dari tiap sistem persamaan linear dan kuadrat (SPLK) berikut ini, kemudian buatlah grafik penyelesaiannya (sketsa tafsiran geometri).
a. y = x  1 dan y = x2  3x + 2
b. y = x  3 dan y = x2  x  2
c. y = 2x + 1 dan y = x2  4x + 3
Jawab:
a. Subtitusikan bagian linear y = x  1 ke bagian kuadrat y = x2  3x + 2, sehingga diperoleh:
 x  1 = x2  3x + 2
 x2  3x  x + 2 + 1 = 0
 x2  4x + 3 = 0
 (x  1)(x  3) = 0
 x = 1 atau x = 3
Nilai x = 1 atau x = 3 disubtitusikan ke persamaan y = x  1.
Untuk x = 1 diperoleh y = 1  1 = 0  (1, 0)
Untuk x = 3 diperoleh y = 3  1 = 2  (3, 2)
Jadi, himpunan penyelesaiannya adalah {(1,0), (3,2)}. Tafsiran geometrinya, garis y = x  1 memotong parabola y = x2  3x + 2 di dua titik yang berlainan yaitu di (1, 0) dan di (3, 2). Perhatikan gambar di bawah ini.
contoh soal grafik penyelesaian sistem persamaan linear dan kuadrat (SPLK) berbentuk eksplisit
b. Subtitusikan y = x  3 ke y = x2  x  2 sehingga diperoleh:
 x  3 = x2  x  2
 x2  x  x  2 + 3 = 0
 x2  2x + 1 = 0
 (x  1)2 = 0
 x = 1
Nilai x = 1 disubtitusikan ke persamaan y = x  3 sehingga didapatkan
 y = 1  3 = 2  (1, 2)
Jadi, himpunan penyelesaiannya adalah {(1, 2)}. Tafsiran geometrinya, garis y = x  3 menyinggung parabola y = x2  x  2 di titik (1, 2). Perhatikan gambar di bawah ini.
contoh soal grafik penyelesaian sistem persamaan linear dan kuadrat (SPLK) berbentuk eksplisit
c. Subtitusikan y = 2x + 1 ke  y = x2  4x + 3, diperoleh
 2x + 1 = x2  4x + 3
 x2  4x + 2x + 3  1 = 0
 x2  2x + 2 = 0
Persamaan kuadrat ini tidak mempunyai akar real, karena D = (2)2  4(1)(2) = 4 < 0. Jadi, himpunan penyelesaiannya adalah himpunan kosong, ditulis . Tafsiran geometrinya, garis y = 2x + 1 tidak memotong maupun menyinggung parabola y = x2  4x + 3. Perhatikan gambar berikut.
contoh soal grafik penyelesaian sistem persamaan linear dan kuadrat (SPLK) berbentuk eksplisit

https://annisahapsari10.blogspot.com/2021/09/sistem-persamaan-kuadrat-linear-dan.html

Komentar

Postingan populer dari blog ini

" Soal Kontekstual Berkaitan Perbandingan Trigonometri Pada Segitiga Siku-Siku, Sudut Elevasi dan Sudut Sudut Depresi "

" Kooordinat Kutub dan Koordinat Kartesius "

" Perbandingan Trigonometri Pada Segitiga Siku-Siku "